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Several real-world applications require efficient and robust 
capabilities to recover an unknown and complex field from noisy 
measurements 
 

Reservoir simulation 

Seismic inversion 

SubTER Initiative 

Target: network loads (at nodes) 
Data: measurement of ‘dispatch’ 

Common	characteris.cs:	
	
§  Target:	spa2al	random	field	

— High	dimensionality	
— Nonlinearly	correlated	
— Non-Gaussian	

§  Data	(measurements)	
— Noisy	and	sparse	

§  Simula.on-based	
— Computa2onally	intensive		
— Models	have	uncertain2es	

§  Need:	
— Accurate	inversion	for	credible	
decision	making	

— Fast	solu2on	for	2mely	
analysis	

Target: Wave speed field  
Data: waveform measurements 

Target: permeability field 
Data: pressures from sensors 

Power grid management 

Target: subsurface structure 
Data: surface deformation 
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Our vision is to build an innovative computational capability for 
high-dimensional statistical inversion without Gaussian/linearity 
assumptions 
 

*T1: Dimension reduction, 
feature extraction and 

‘decorrelation’ 
Prior 

Decorrelated  
‘features’ 

MCMC 
Posteriors 

MCMC 
priors 

Updated 
field priors 

Posterior 

Simulation model 
with uncertainty Measurement data 

MCMC = Markov Chain Monte Carlo 
*  = HPC intensive 

T2: Feature space 
‘Gaussianization’ 

*T4: Inverse mapping via 
e.g., high-dimensional 
nonlinear optimization 

**T3: Simulation-based 
and gradient-enhanced 

parallel MCMC  

Initial knowledge 
of the stochastic 
field (e.g. 106) 

Improved knowledge 
of the stochastic field 
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min J y x( )( )
M y x( )( ) = 0
f (y,x) = 0

A cost functional one needs to minimize 

Subject to a nonlinear simulation model as a constraint 

Continuous parameterization: parameters y and normal 
random variables x satisfy an implicit equation 
derived by a kernel PCA 
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The gradient of J to x by a adjoint operator on a 
gradient of J to y computed by the adjoint model 

The adjoint operator is computed by an automatic differentiation 

Kernel principal component analysis (KPCA) based PDE 
constrained nonlinear optimal control is outlined as the following 
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The adjoint-based linear elasticity inversion problem is described 
as the following 
 

Forward model 

Adjoint model 

Cost function 

Gradient calculation 
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The flowchart of the framework for coupling nonlinear optimal 
control with kernel PCA is described as the following 	

Optimizer 

KPCA 

X 
F(X) 
dF/dX 

Snapshot  
Library (S) 

Simulation 
Model 

Main 
program 

S 

ξ	

ξ , Bounds, 
Initial guess	

ξ	
X, dX/dξ	

Observations 

Output X 
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We	perturb	a	pre-selected	channelized	material	property	field	with	10	types	
of	trigonometric	func.ons	to	generate	200	snapshots	then	use	one	as	true	
solu.on	and	snapshots	average	as	an	ini.al	guess	of	the	true	solu.on	
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We	solve	the	linear	elas.city	inversion	problem	by	L-BFGS	based	non-linear	
op.miza.on	without	the	use	of	either	linear	PCA	or	kernel	PCA	
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We	then	solve	the	linear	elas.city	inversion	using	L-BFGS	coupled	with	either	
linear	PCA	or	kernel	PCA	by	choosing	10	leading	principle	components	
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We also solve the linear elasticity inversion using LBFGS coupled 
with either linear PCA or kernel PCA by choosing 9 leading 
principle components 
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Typical realizations obtained with kernel PCA of order 1 (linear 
PCA) are plotted as the following 
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Typical realizations obtained with kernel PCA of order 1 (linear 
PCA) are plotted as the following 



LLNL-PRES-xxxxxx 
13	

Typical realizations obtained with kernel PCA of order 1 (linear 
PCA) are plotted as the following 
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Typical realizations obtained with kernel PCA of order 3 are plotted 
as the following 
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Typical realizations obtained with kernel PCA of order 3 are plotted 
as the following 
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Typical realizations obtained with kernel PCA of order 3 are plotted 
as the following 
 


